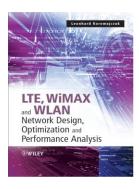
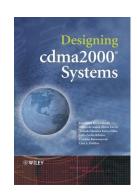


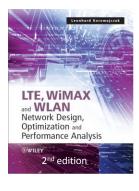
How to consider Customer Experience when designing a wireless network

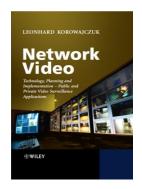
Leonhard Korowajczuk
CEO/CTO

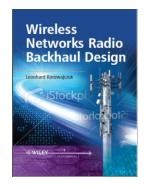
CelPlan International, Inc.


www.celplan.com webinar@celplan.com


Presenter




Leonhard Korowajczuk


- CEO/CTO CelPlan International
- 45 years of experience in the telecom field (R&D, manufacturing and service areas)
- Holds13 patents
- Published books
 - "Designing cdma2000 Systems"
 - published by Wiley in 2006- 963 pages, available in hard cover, e-book and Kindle
 - "LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis"
 - published by Wiley in June 2011- 750 pages, available in hard cover, e-book and Kindle
- Books in Preparation:
 - LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis
 - second edition (2014) LTE-A and WiMAX 2.1(1,000+ pages)
 - Network Video: Private and Public Safety Applications (2014)
 - Backhaul Network Design (2015)
 - Multi-Technology Networks: from GSM to LTE (2015)
 - Smart Grids Network Design (2016)

CelPlan International

- Employee owned enterprise with international presence
 - Headquarters in USA
 - 450 plus employees
 - Twenty (20) years in business
- Subsidiaries in 6 countries with worldwide operation
- Vendor Independent
- Network Design Software (CelPlanner Suite/CellDesigner)
- Network Design Services
- Network Optimization Services
- Network Performance Evaluation

- Services are provided to equipment vendors, operators and consultants
- High Level Consulting
 - RFP preparation
 - Vendor interface
 - Technical Audit
 - Business Plan Preparation
 - Specialized (Smart Grids, Aeronautical, Windmill, ...)
- Network Managed Services
- 2G, 3G, 4G, 5G Technologies
- Multi-technology / Multi-band Networks
- Backhaul, Small cells, Indoor, HetNet, Wi-Fi offloading

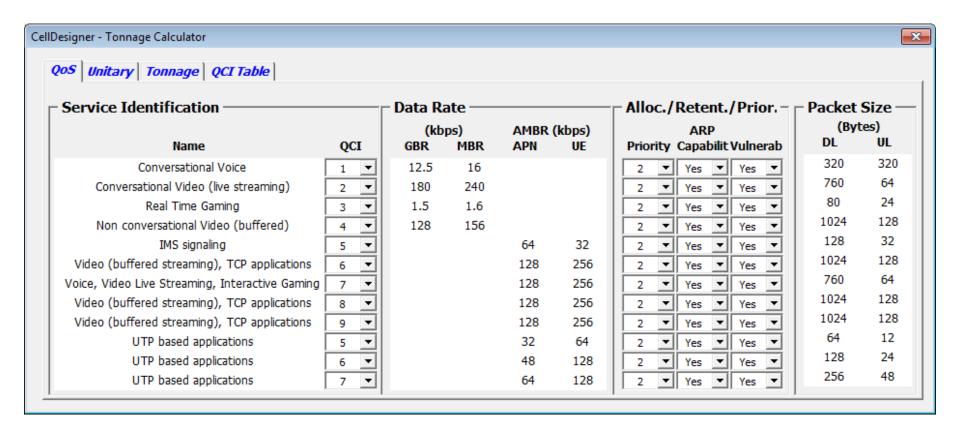
CelPlan Webinar Series

- How to Dimension user Traffic in 4 G networks
 - May 7th 2014
- How to Consider Overhead in LTE Dimensioning and what is the impact
 - June 4th 2014
- How to Take into Account Customer Experience when Designing a Wireless Network
 - July 9th 2014
- LTE Measurements what they mean and how they are used?
 - August 6th2014
- What LTE parameters need to be Dimensioned and Optimized?
 - September 3rd 2014
- Spectrum Analysis for LTE Systems
 - October 1st 2014
- MIMO: What is real, what is Wishful Thinking?
 - November 5th 2014
- Send suggestions and questions to: webinar@celplan.com

Webinar 1 (May 2014) How to Dimension User Traffic in 4G Networks

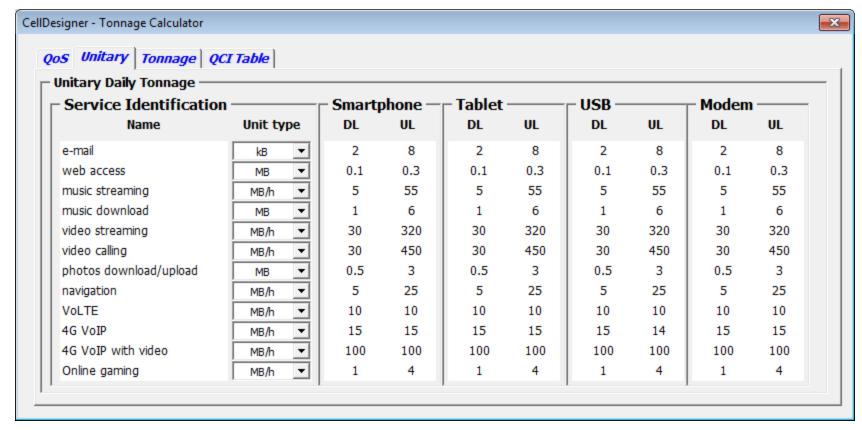
Quiz Challenge

More than 200 participants from 44 countries Identify the country codes of participants of the last webinar

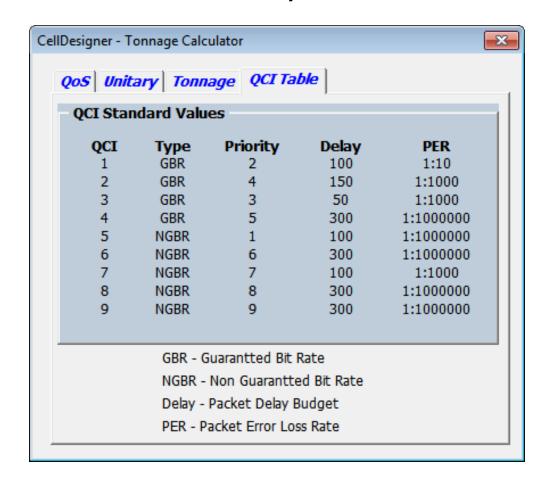

1	AE	ARE	UNITED ARAB EMIRATES
2	BD	BGD	BANGLADESH
3	BG	BGR	BULGARIA
4	ВІ	BDI	BURUNDI
5	BR	BRA	BRAZIL
6	BW	BWA	BOTSWANA
7	CA	CAN	CANADA
8	CG	COG	CONGO
9	DE	DEU	GERMANY
10	DK	DNK	DENMARK
11	EG	EGY	EGYPT
12	ES	ESP	SPAIN
13	FR	FRA	FRANCE
14	GB	GBR	UNITED KINGDOM
15	GH	GHA	GHANA
16	GR	GRC	GREECE
17	HU	HUN	HUNGARY
18	IE	IRL	IRELAND
19	IN	IND	INDIA
20	IT	ITA	ITALY
21	JO	JOR	JORDAN
22	KW	KWT	KUWAIT

23	LB	LBN	LEBANON
24	MA	MAR	MOROCCO
25	MV	MDV	MALDIVES
26	NG	NGA	NIGERIA
27	NL	NLD	NETHERLANDS
28	NO	NOR	NORWAY
29	OM	OMN	OMAN
30	PK	PAK	PAKISTAN
31	PT	PRT	PORTUGAL
32	QA	QAT	QATAR
33	SA	SAU	SAUDI ARABIA
34	SE	SWE	SWEDEN
35	SG	SGP	SINGAPORE
36	SI	SVN	SLOVENIA
37	TJ	TJK	TAJIKISTAN
38	TN	TUN	TUNISIA
39	TR	TUR	TURKEY
40	TW	TWN	TAIWAN
41	TZ	TZA	TANZANIA, UNITED REPUBLIC OF
42	UA	UKR	UKRAINE
43	US	USA	UNITED STATES
44	ZA	ZAF	SOUTH AFRICA

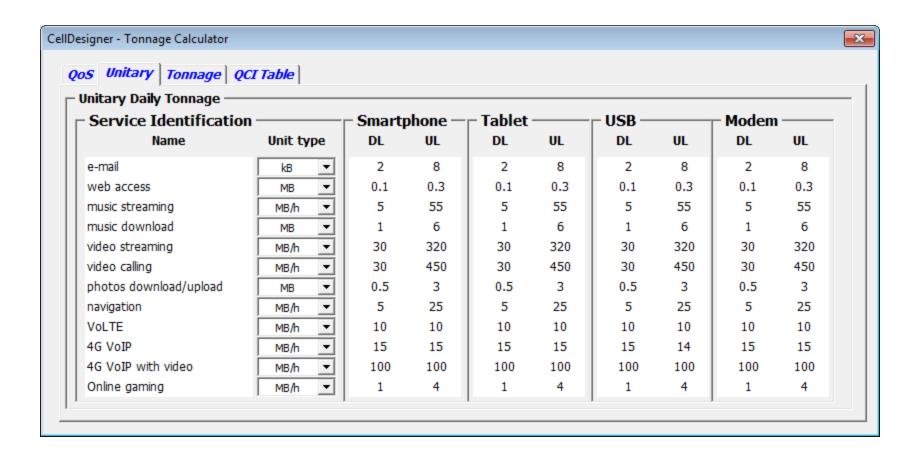
How to Dimension User Traffic in 4G Networks 1 CelPlan


- Service QoS
 - Services were identified and quality requirements established

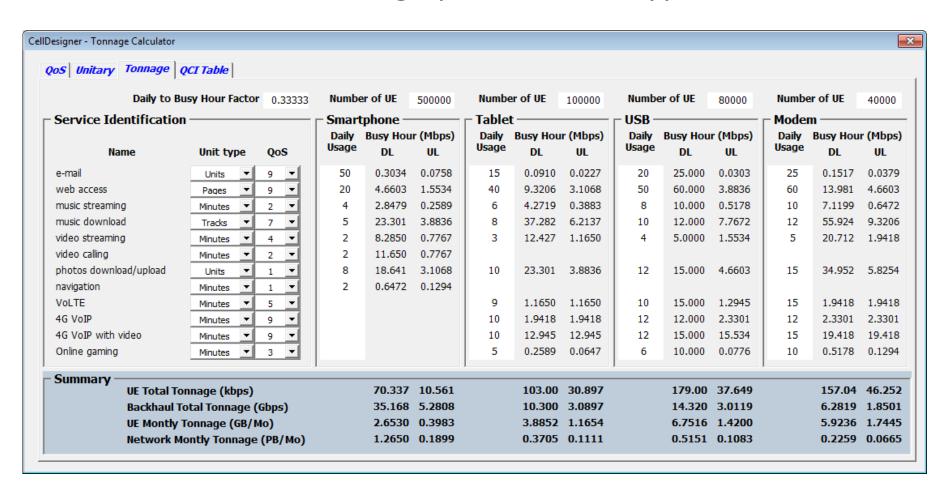
How to Dimension User Traffic in 4G Networks 2


- Unitary Tonnage per Service
 - Data speed and tonnage concepts were defined
 - Tonnage per service was estimated

How to Dimension User Traffic in 4G Networks 3


- QoS Class identifier (QoS)
- Default QCI values identified by 3GPP

Tonnage Calculator per service


Unitary Daily Tonnage per terminal

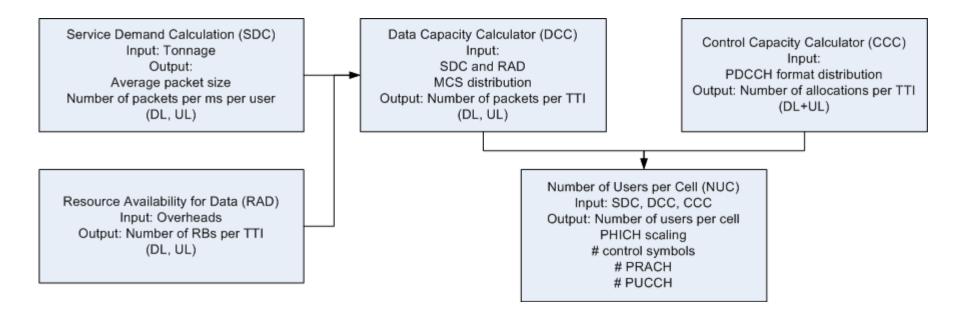
How to Dimension User Traffic in 4G Networks

- Service tonnage per terminal type
 - Total network tonnage per terminal type was estimated

Webinar 2 (June 2014) How to consider overhead in LTE dimensioning and what is the impact

Quiz Challenge

More than 250 participants from 49 countries


1	AE	ARE	UNITED ARAB EMIRATES
2	AN	ANT	NETHERLANDS ANTILLES
3	AR	ARG	ARGENTINA
4	AU	AUS	AUSTRALIA
5	BB	BRB	BARBADOS
6	ВН	BHR	BAHRAIN
7	BR	BRA	BRAZIL
8	BZ	BLZ	BELIZE
9	CA	CAN	CANADA
10	СН	CHE	SWITZERLAND
11	CN	CHN	CHINA
12	СО	COL	COLOMBIA
13	DO	DOM	DOMINICAN REPUBLIC
14	EC	ECU	ECUADOR
15	EG	EGY	EGYPT
16	ES	ESP	SPAIN
17	FR	FRA	FRANCE
18	GB	GBR	UNITED KINGDOM
19	GH	GHA	GHANA
20	GN	GIN	GUINEA
21	GR	GRC	GREECE
22	GT	GTM	GUATEMALA
23	HT	HTI	HAITI
24	ID	IDN	INDONESIA
25	ΙE	IRL	IRELAND

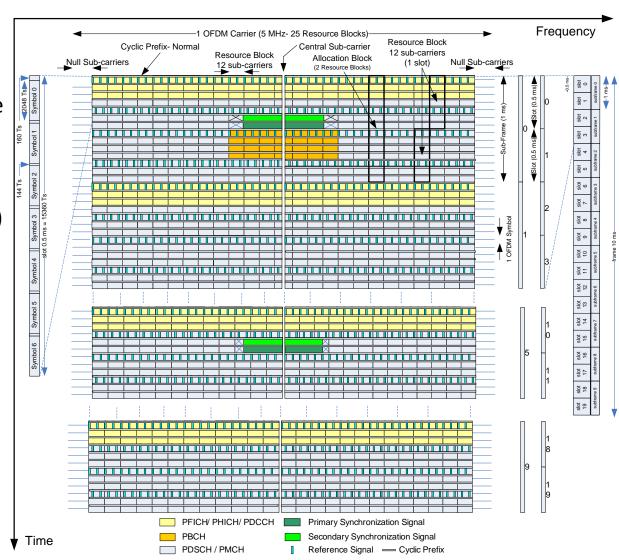
IN	IND	INDIA
IR	IRN	IRAN (ISLAMIC REPUBLIC OF)
IT	ITA	ITALY
JO	JOR	JORDAN
KW	KWT	KUWAIT
MA	MAR	MOROCCO
MX	MEX	MEXICO
MY	MYS	MALAYSIA
NC	NCL	NEW CALEDONIA
NG	NGA	NIGERIA
NL	NLD	NETHERLANDS
NO	NOR	NORWAY
OM	OMN	OMAN
PA	PAN	PANAMA
PE	PER	PERU
PK	PAK	PAKISTAN
PR	PRI	PUERTO RICO
PT	PRT	PORTUGAL
SR	SUR	SURINAME
TH	THA	THAILAND
TT	TTO	TRINIDAD AND TOBAGO
TW	TWN	TAIWAN, PROVINCE OF CHINA
US	USA	UNITED STATES
ZA	ZAF	SOUTH AFRICA
	IR IT JO KW MA MX MY NC NG NL NO OM PA PE PK PR TH TT TW US	IR IRN IT ITA JO JOR KW KWT MA MAR MX MEX MY MYS NC NCL NG NGA NL NLD NO NOR OM OMN PA PAN PE PER PK PAK PR PRI PT PRT SR SUR TH THA TT TTO TW TWN US USA

How to consider overhead in LTE dimensioning and what is the impact

- LTE cell capacity is limited by the network configuration and the user traffic characteristics
- The following items should be calculated for different scenarios
 - Service Demand
 - Resource Availability for data
 - Data Transfer Capacity
 - Control (mapping) Capacity
- Cell User Capacity can then be estimated and Pre-programed resources dimensioned

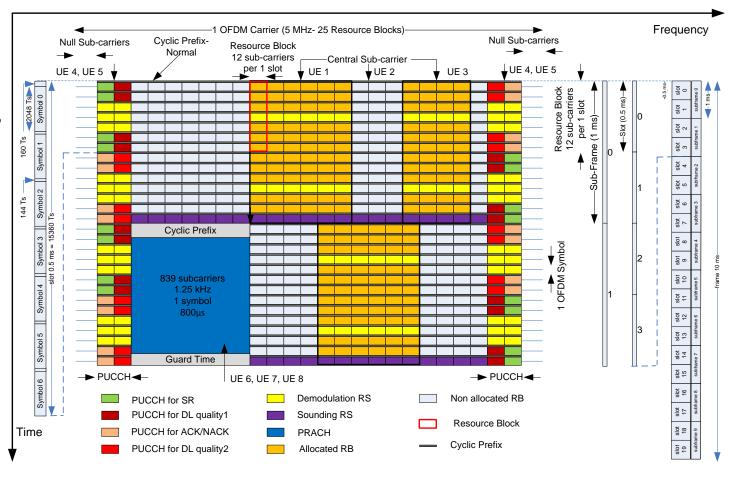
LTE Refresher

Focused on topics related to capacity and overhead


Downlink Frame

- Cyclic Prefix (CP)
 - addition to symbol duration that eliminates intersymbol interference due to multipath
- A slot can fit:
 - 7 symbols (normal CP)
 - 6 symbols (extended CP)

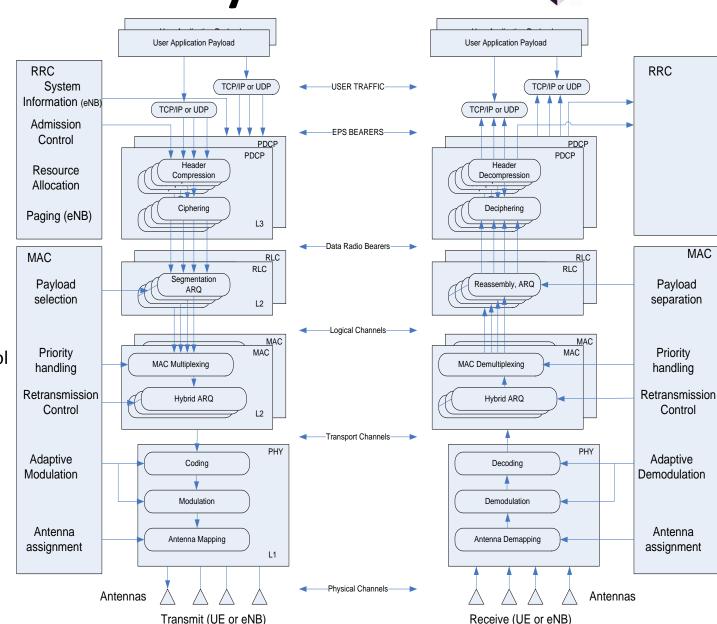
	Ts	μs	km
Cyclic Prefix= Normal	160/144	5.2/4.7	1.4
Cyclic Prefix= Extended	512	16.7	5.0


- TTI OFDM symbols are divided in two blocks
 - Control (yellow)
 - Data (blue)

Uplink Frame

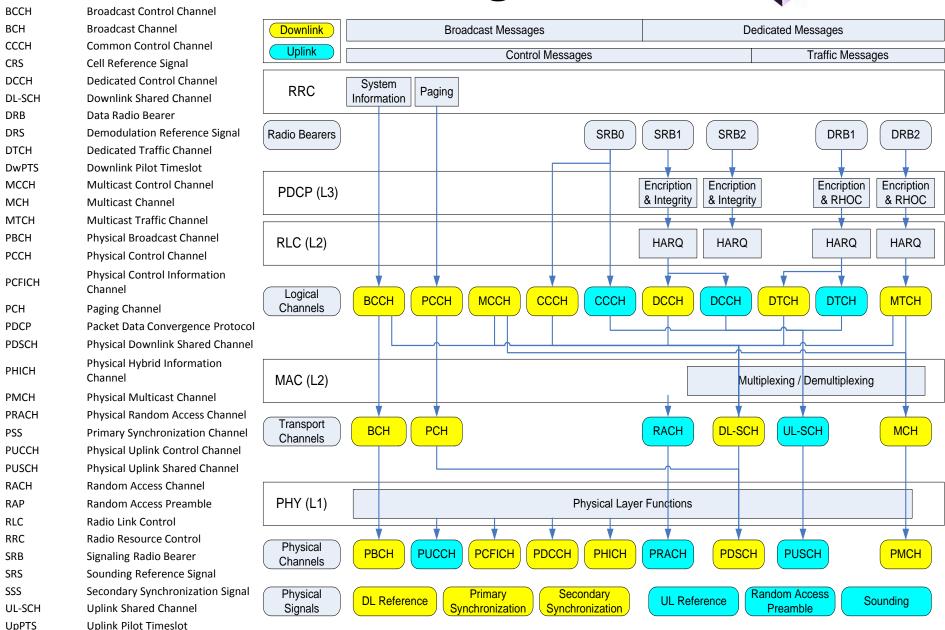
- Information set is a contiguous number of RBs
 - Control,Data orRandomAccess
- An UE can transmit per TTI
 - Release 8: 1 set of information
 - Release 10:2 sets ofinformation

Protocol Layers



Management Layers

- Radio Resource Management (RRM)
- Radio Resource Control (RRC)
- Medium Access Control (MAC)


Protocol Layers

- Packet DataConvergenceProtocol (PDCP)
- Radio Link Control (RLC)
- Medium Access Control (MAC)
- Physical Layer (PHY)

Channels and Signals

7/6/2014

Transmission Mode

- eNB and UE can communicate through different transmission modes, depending on:
 - UE capability
 - RF channel condition

Mode	PDSCH Transmission Mode (using C-RNTI to address UE)	DCI Format	Search Space	Channel State Information (UE feedback)	
1	Single antenna port (port 0)	1A	Common and UE specific	CQI	
1	Single antenna port (port 0)	1 UE specific		CQI	
2	Transmit Diversity	1A	Common and UE specific	CQI	
	Transmit Diversity	1	UE specific	CQI	
3	Transmit Diversity	1A	Common and UE specific	COLBI	
,	Open Loop Spatial Multiplexing or Transmit Diversity	2A	UE specific	CQI, RI	
	Transmit Diversity	1A	Common and UE specific		
4	Closed Loop Spatial Multiplexing or Transmit Diversity	2	UE specific	CQI, RI, PMI	
5	Transmit Diversity	1A	Common and UE specific	COL DVI	
,	Multi-user MIMO	1D	UE specific	CQI, PMI	
	Transmit Diversity	1A	Common and UE specific		
6	Closed Loop Spatial Multiplexing using Single Transmission Layer	1B	UE specific	CQI, PMI	
7	Single antenna port (port 0) or Transmit Diversity	1A	Common and UE specific	COI	
,	Single antenna port (port 5)	1	UE specific	CQI	
	Single antenna port (port 0) or Transmit Diversity	1A	Common and UE specific	CQI	
8	Dual layer transmission or single antenna port (port 7 and 8)	2B	UE specific	PMI, RI if instructed by eNB	
	Single antenna port (port 0) or Transmit Diversity	1A	Common and UE specific	CQI	
9	Up to 8 layers transmission (port 7 to 14)	2C	UE specific	PTI, PMI, RI if instructed by eNB	

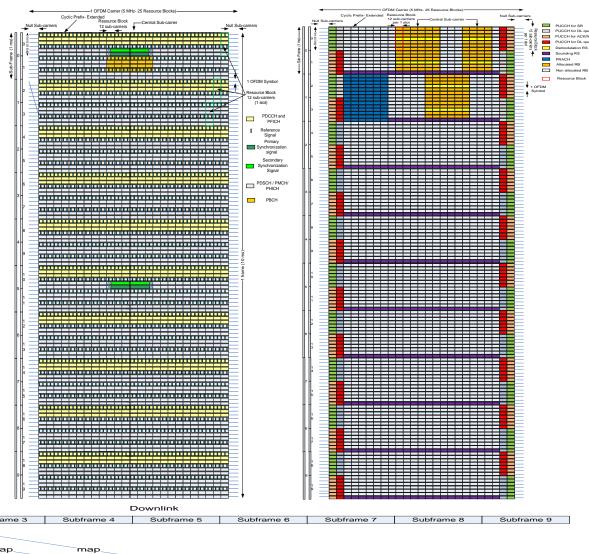
Modulation and Coding Scheme

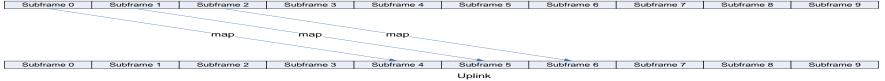
- UE reports one of 15 CQI (Channel Quality Indicator)
- CQI values are mapped to 29 MCS (Modulation and Coding Scheme) indexes
- MCS indexes are mapped to 27 TBS (Transport Block Size) indexes

	CQI	modulation	coding rate x 1024	Code Rate	efficiency	Adjusted	CR equiv.	MCS Index	modulation	coding rate x 1024	Code Rate	efficiency
	2	QPSK	120	0.1172	0.2343750	0.2343750	120.00	0	2	120	0.1172	0.2344
		QPSK				0.3056641	156.50	1	2	157	0.1533	0.3066
,	3	QPSK	193	0.1885	0.3769531	0.3769531	193.00	2	2	193	0.1885	0.3770
y		QPSK				0.4892578	250.50	3	2	251	0.2451	0.4902
	4	QPSK	308	0.3008	0.6015625	0.6015625	308.00	4	2	308	0.3008	0.6016
		QPSK				0.7392578	378.50	5	2	379	0.3701	0.7402
	5	QPSK	449	0.4385	0.8769531	0.8769531	449.00	6	2	449	0.4385	0.8770
		QPSK				1.0263672	525.50	7	2	526	0.5137	1.0273
	6	QPSK	602	0.5879	1.1757813	1.1757813	602.00	8	2	602	0.5879	1.1758
		QPSK				1.3261719	679.00	9	2	679	0.6631	1.3262
		16QAM				1.3261719	339.50	10	4	340	0.3320	1.3281
4	7	16QAM	378	0.3691	1.4765625	1.4765625	378.00	11	4	378	0.3691	1.4766
		16QAM				1.6953125	434.00	12	4	434	0.4238	1.6953
	8	16QAM	490	0.4785	1.9140625	1.9140625	490.00	13	4	490	0.4785	1.9141
		16QAM				2.1601563	553.00	14	4	553	0.5400	2.1602
	9	16QAM	616	0.6016	2.4062500	2.4062500	616.00	15	4	616	0.6016	2.4063
		16QAM				2.5683594	657.50	16	4	658	0.6426	2.5703
,		64QAM				2.5683594	438.33	17	6	439	0.4287	2.5723
	10	64QAM	466	0.4551	2.7304688	2.7304688	466.00	18	6	466	0.4551	2.7305
		64QAM				3.0263672	516.50	19	6	517	0.5049	3.0293
	11	64QAM	567	0.5537	3.3222656	3.3222656	567.00	20	6	567	0.5537	3.3223
		64QAM				3.6123047	616.50	21	6	616	0.6016	3.6094
	12	64QAM	666	0.6504	3.9023438	3.9023438	666.00	22	6	666	0.6504	3.9023
		64QAM				4.2128906	719.00	23	6	719	0.7021	4.2129
	13	64QAM	772	0.7539	4.5234375	4.5234375	772.00	24	6	772	0.7539	4.5234
		64QAM				4.8193359	822.50	25	6	822	0.8027	4.8164
	14	64QAM	873	0.8525	5.1152344	5.1152344	873.00	26	6	873	0.8525	5.1152
		64QAM				5.3349609	910.50	27	6	910	0.8887	5.3320
	15	64QAM	948	0.9258	5.5546875	5.5546875	948.00	28	6	948	0.9258	5.5547

Frame Organization

Downlink

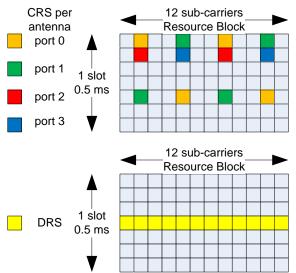

- Control area
- Data area

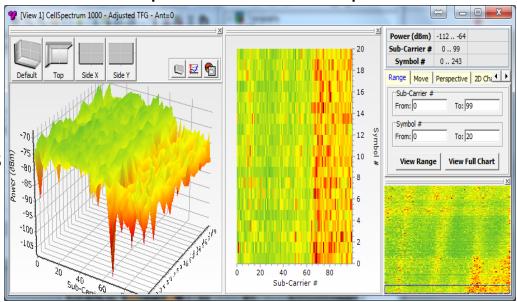

Uplink

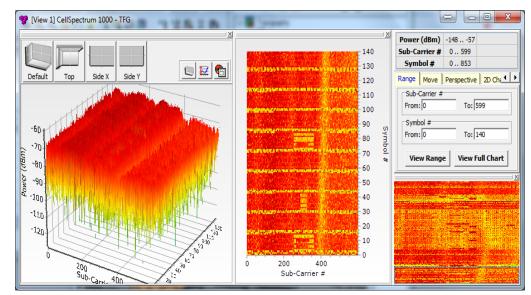
- Control area
- RACH area
- Data area

Transmit Time Interval (TTI)

- Data packet has to be transfered inside a TTI period
- Several packets can be transfered within the same TTI
- The downlink control area maps the data location in the data area for downlink and uplink
- Control information location has to be found through blind search by the UE

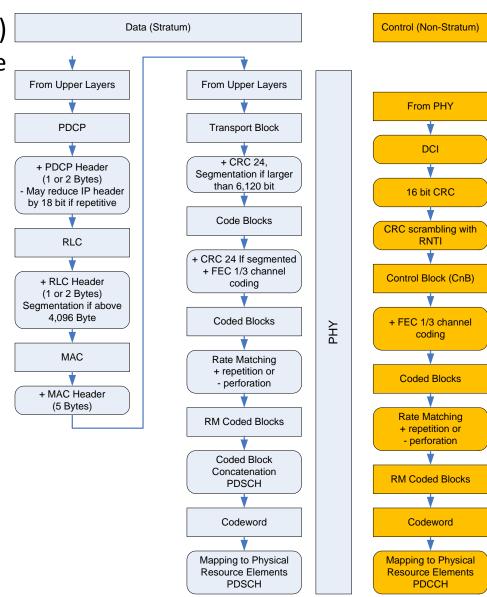



Channel Equalization



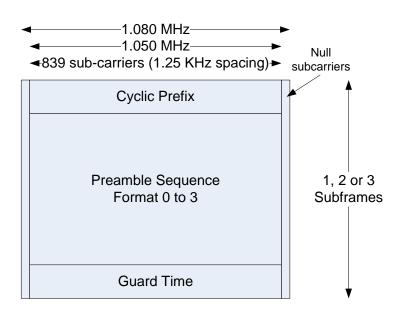
- A broadband channel has significant variations in frequency and time
- This variations have to be corrected before data is extracted
- Reference Signals are used for this purpose
- Reference Signals are known sequences that can be compared to a local reference
- Cell Reference Signals are used in the dowlink
- Demodulation Reference Signals are used in the uplink

CellSpectrum screen captures



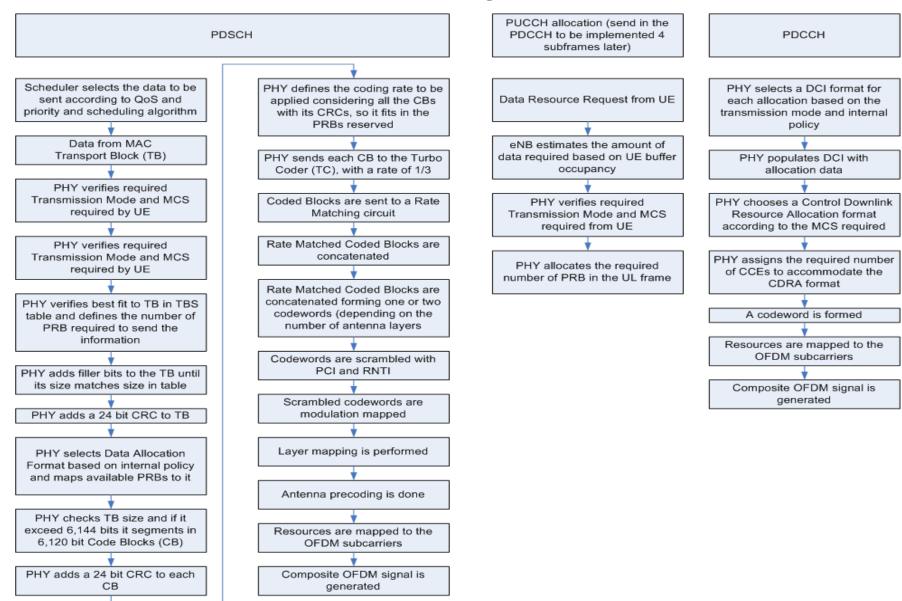
Downlink Control Area

- Downlink Control Information (DCI)
 - Informs how data is mapped in the TTI in terms of Resource Block Groups (RBG)
 - Informs the transmission characteristics of the data
 - Has several formats according to the transmission mode
 - Format is chosen according to the transmission mode and internal policy
- Physical Downlink Control Channel (PDCCH)
 - It uses QPSK modulation
 - Carries DCI information
 - It has 4 formats that are chosen according to RF channel condition
 - Each PDCCH format is allocated to a certain number of CCEs and consequently results in a different coding rate



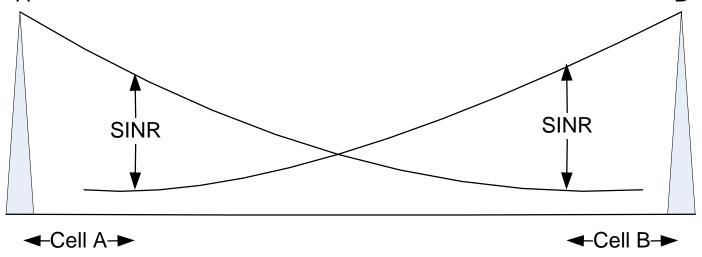
Uplink RACH Area

- RACH areas are announced in SIB2
- There are 4 RACH area formats


RACH configuration	Range	Step
Number of RA preambles	4 to 64	4
Size of RA preamble Group A	4 to 60	
Message size Group A	56, 14, 208, 256 bit	
Message power offset Group B	0, 5, 8, 10, 12, 15, 18 dB	
Power ramping step size	0, 2, 4,6 dB	
Preamble initial received target power	-120 to -90 dBm	2
Maximum number of preamble transmissions	3, 4, 5, 6, 7, 8, 10, 20, 50, 100, 200	
Random Access response window size	2, 3, 4, 5, 6, 7, 8, 10 subframes	
MAC contention resolution timer	8, 16, 24, 32, 40, 48, 56, 64 subframes	
Maximum number of HARQ transmissions	1 to 8	1

PRACH Format	Duplex	RACH sub- carriers	Sub- carrier width (kHz)	Total width (kHz)	Cell sub- carriers	RBs	PRACH CP (μs)	PRACH Symbols	Sequence (us)	Guard Time (μs)	Total duration (μs)	Sub- frames	Maximum Cell Range (km)	Cell size	
0	FDD & TDD	839	1.25	1,049	69.92	6	103.13	1	800	96.88	1000	1	14.5	medium cells	
1	FDD & TDD	839	1.25	1,049	69.92	6	684.38	1	800	515.63	2000	2	77.3	very large cells	
2	FDD & TDD	839	1.25	1,049	69.92	6	203.13	2	1600	196.88	2000	2	29.5	large cells	
3	FDD & TDD	839	1.25	1,049	69.92	6	684.38	2	1600	715.63	3000	3	107.3	extra-large cells	
4	TDD	139	7.5	1,043	69.50	6	14.58	0.17	133.33	9.38	157	0.16	1.4	small cells	

Data Allocation by PHY



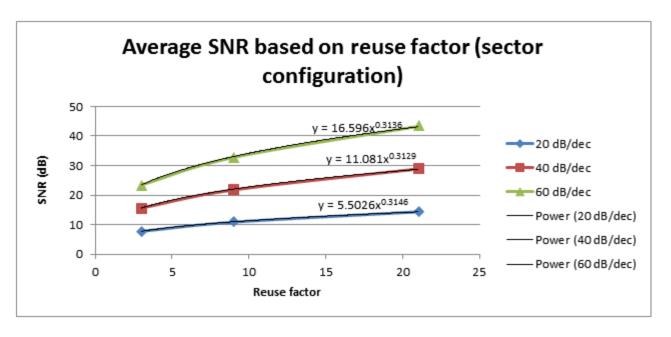
Cellular Reuse

- Cellular technology is based on a physical separation between the usage of the same resources
- Each modulation requires a certain SNR, depending on the environment characteristics

The separation has to be larger for Rayleigh environments (non LOS) than for Gaussian ones (LOS)

	Required SNR (dB)												
QPSK 16QAM 64 QAM													
Gaussian	2.5	8.2	12.1										
Rayleigh	15.7	21.3	25										

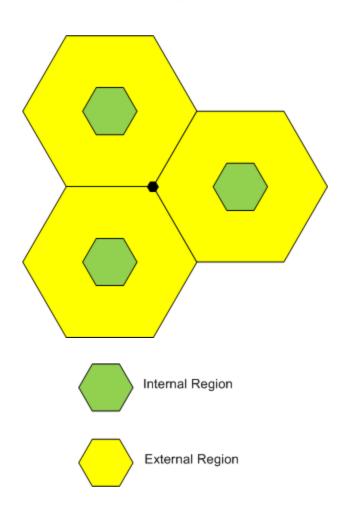
Reuse factor for different environments



The equations to find the reuse from the target SNR are:

• For 20 dB/dec:
$$x = \left(\frac{SINR}{5.5026}\right)^{3.18877553}$$

• For 40 dB/dec:
$$x = \left(\frac{SINR}{11.081}\right)^{3.195909}$$


• For 60 dB/dec:
$$x = \left(\frac{SINR}{16.596}\right)^{3.17864}$$

Reuse in LTE

- LTE was conceived for reuse 1
- A cell was divided in an interior (center) and and an exterior (edge) regions
- The exterior region would use very low coding rates (in the order of 0.07)
- The interior region would use higher coding rates
- No criteria was established to define exterior and interior regions
- Broadcast information has to use low coding rates
- Intercell Cell Interference Coordination (ICIC)
 was considered to improve the performance,
 four cases were proposed
 - No ICIC
 - Start-Stop Index (SSI)
 - Start Index (SI)
 - Random Start Index (RSI)
 - Start Index Geometry Weight (SIGW)
 - Random Index Geometry Weight (RIGW)

Bit scrubbing

- 3GPP decision of implementing a reuse of 1 in LTE implied in:
 - High repetition rates for control information
 - This lead to bit scrubbing (bit shaving) and complexity
 - Blind decoding, implicit addressing, multiple options
 - High data spread rates that trade reuse of 1 for low throughputs
 - Complex transmission modes
 - Some transmission modes can be practically used in few locations in the network (if at all)
- 3GPP provided mechanisms to avoid resource reuse conflicts
 - It suggested that interference is concentrated at cell edge and that reuse of 1 can be done in cell center
 - It did not specify how this should be done
 - Several implementation schemes have been suggested, none full proof
 - Traditional segmentation and zoning still being used

CelPlan Patent Applications

- CelPlan proposed a method of regionalizing a cell in several sub-cells according to different criteria
- CelPlan proposed a method of allocating resources to cells from a pool based on owned and shared resource tables

APPLICATION FOR UNITED STATES LETTERS PATENT

Title

APPARATUS TO PERFORM RESOURCE ASSIGNMENT IN A WIRELESS NETWORK

Inventor(s): Leonhard KOROWAJCZUK

> Date Filed: February, 2013

Attorney Docket No.: 7230-102

APPLICATION FOR UNITED STATES LETTERS PATENT

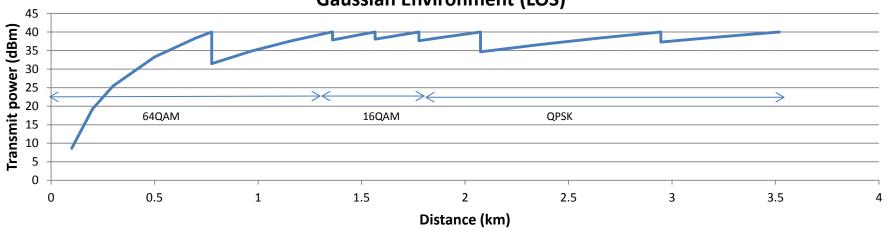
Title

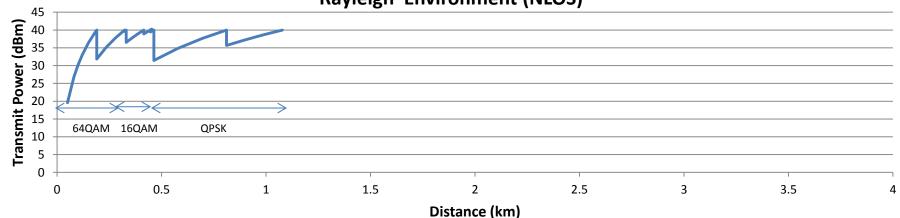
CHARACTERIZING A BROADBAND WIRELESS CHANNEL

Inventor(s): Leonhard KOROWAJCZUK

> Date Filed: July 25, 2013

Attorney Docket No.: 7230-101


Adaptive Modulation and Environment

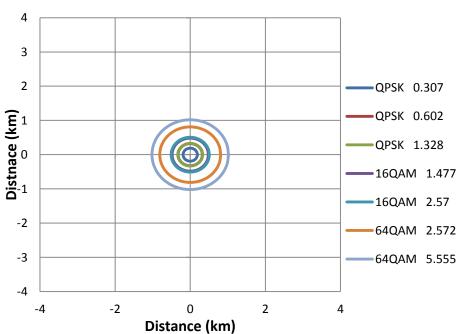

Power Control is used in the uplink, but its relevance is small considering link adaptation

Representation below covers MCS= 0, 4, 9, 10, 16, 17, 28

Distance x Modulation Scheme x Power Control Gaussian Environment (LOS)

Distance x Modulation Scheme x Power Control Rayleigh Environment (NLOS)

Adaptive Modulation Relative Areas

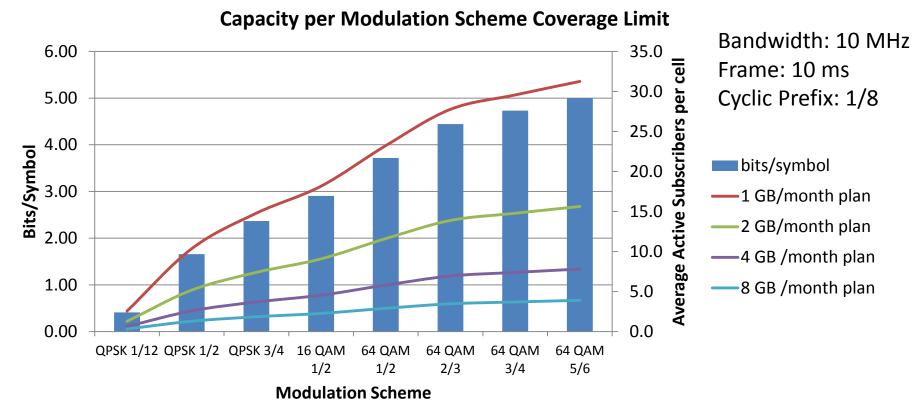

Frequency: 1 GHz, Bandwidth:10 MHz, TX antenna=12 dB, RX antenna=0 dB, NF= 10 dB Model Okomura-Hata slope: 35 dB, SNR for AWGN (LOS) and Rayleigh (NLOS)

MCS	Modulation	Coding Rate	Spectral Efficiency	Cell Radius (km)	Cell Area (km²)	Cell Area	Cell Capacity %	MCS	Modulation	Coding Rate	Spectral Efficiency	Cell Radius (km)	Cell Area (km²)	Cell Area %	Cell Capacity %
MCS0	QPSK	0.117	0.23	3.5	11.6	29.9%	7%	MCS0	QPSK	0.117	0.23	1.1	1.6	4.1%	13%
MCS4	QPSK	0.301	0.602	2.9	13.7	35.3%	20%	MCS4	QPSK	0.301	0.602	0.8	1.4	3.6%	29%
MCS9	QPSK	0.663	1.326	2.1	3.6	9.3%	11%	MCS9	QPSK	0.663	1.326	0.5	0.0	0.1%	2%
MCS10	16QAM	0.332	1.328	1.8	4.1	10.6%	13%	MCS10	16QAM	0.332	1.328	0.4	0.3	0.7%	13%
MCS16	16QAM	0.6425	2.57	1.4	0.0	0.1%	0%	MCS16	16QAM	0.6425	2.57	0.3	0.0	0.0%	1%
MCS17	64QAM	0.4286	2.572	1.4	3.9	10.0%	24%	MCS17	64QAM	0.4287	2.572	0.3	0.2	0.6%	19%
MCS28	64QAM	0.9258	5.555	0.8	1.9	4.9%	25%	MCS28	64QAM	0.9253	5.555	0.2	0.1	0.3%	22%

Modulation Radius (LOS)

4 3 2 QPSK 0.307 Distance (km) QPSK 0.602 QPSK 1.328 16QAM 1.477 -16QAM 2.57 64QAM 2.572 -2 64QAM 5.555 -3 -4 -4 -2 Distance (km)

Modulation Radius (NLOS)



7/6/2014

Adaptive Modulation Capacity

- On the bottom are the modulation schemes
- On the left are the average bits per symbol achieved by each modulation scheme (blue bars)
- On the right are the average active users that can be accommodated by each modulation scheme
 - The curves represent monthly user tonnage plan

Dimensioning and Planning

What are the overheads?

- Control and Data overheads
 - PDCP, RLC and MAC headers
 - PCFICH and PHICH
 - PDCP IP address compression
 - PHY TB CRC and CB CRC
- DL Frame overheads
 - Reference Signals
 - MBMS
 - Control Area (DCI, ACK/NACK)
 - PHY messages
 - SIB messages
 - RRM messages (CCCH)
- UL Frame overheads
 - Reference Signals
 - Control Area (CSI, ACK/NACK,
 - Random Access
 - RRM messages (CCCH)

- Cell Load
 - Resource interference avoidance
 - Reuse factor
 - Handover
 - Statistical distribution in relation to average

What are the possible bottlenecks?

- Number of available PDCCH limits the number of allocations that can be done in a TTI
- PDSCH area should be enough to allocate data for UE
- PRACH area should be enough for UEs to access it with a minimum amount of conflict
- PUCCH area should be enough for UEs to send CSI and ACK/NACK information
- PUSCH area should be enough to allocate UE data

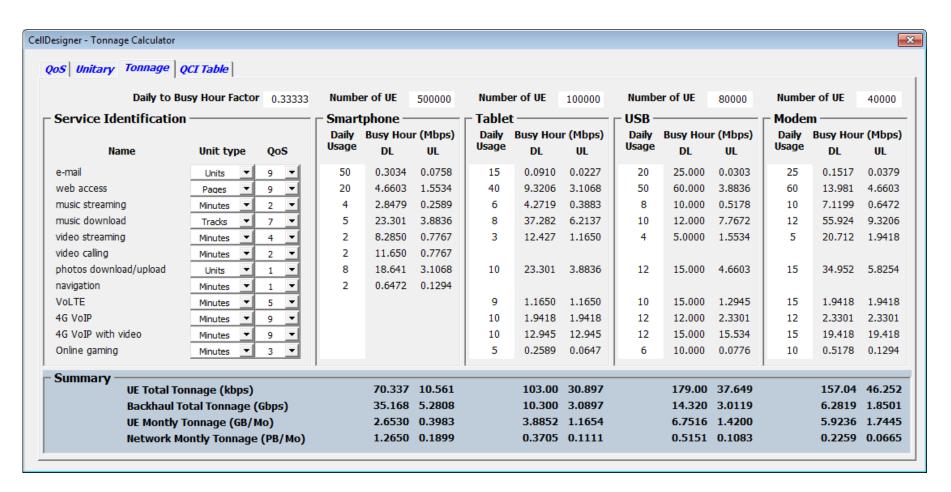
What has to be dimensioned?

- Number of DL control symbols (PCFICH)
- PHICH scaling factor (ACK/NACK)
- PRACH iterations capacity
- PUCCH iterations capacity
- Number of users that PDCCH area can handle
- Number of users that PDSCH area can handle
- Number of users that PRACH area can handle
- Number of users that PUCCH area can handle
- Number of users that PUSCH area can handle

What should be planned?

- Link Budget
- Channel (frequency)
- Cyclic Prefix
- Physical Layer Cell Identity (PCI)
- Cell and BTS Identity Planning
- Tracking Areas
- PRACH
 - Configuration Index (CI)
 - · Preamble format, cell range, load, RF
 - Root Sequence Index (RSI)
 - Unique per cell
 - Zero Correlation Zone (ZCZ)
 - Cell range, RF, RSI size
 - High Speed flag
 - Frequency offset
 - PUCCH allocation
- Uplink Reference Signal Sequence

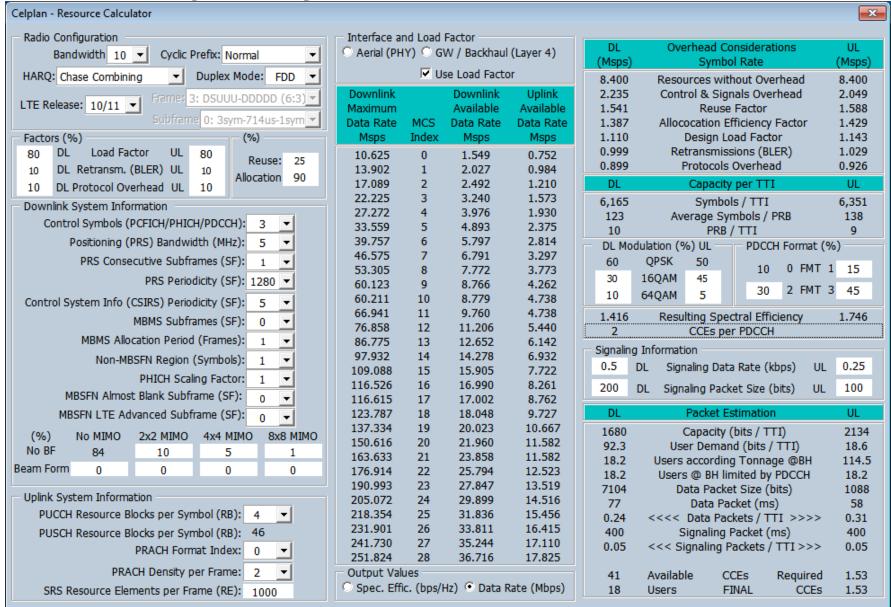
- Neighbors
 - LTE
 - UMTS
 - GSM
 - CDMA
 - WiMAX
- Handover
- BTS and Cell Identity
- Tracking Area
- Co-siting
- Resource Reuse
 - Cell Planning
 - Segmentation
 - Zoning
 - Fractional Planning
 - Internal/ external
 - ICIC
 - X2 interface



User Traffic Calculator

User Traffic Calculator

- Service tonnage per terminal type
 - Total network tonnage per terminal type was estimated



Internal tool used for testing code implementation

- Allows user to configure the cell
- Estimates overheads
- Considers design factors
- Provides capacity of UEs considering
 - Downlink
 - Control capacity
 - Data capacity
 - Uplink
 - Control capacity
 - Data capacity
 - Random access capacity

Today's Topic

Webinar 3 (July 2014) How to consider Customer Experience when designing a wireless network

Content

- 1. How to evaluate Customer Experience?
- 2. What factors affect customer experience?
- 3. Parameters that affect cutomer experience
- 4. SNR availability and how to calculate it
- 5. Conclusions
- 6. New Products

1. How to evaluate Customer Experience?

How to evaluate Customer Experience?

- Existing Network
 - Ask the customer
 - Customer expect the same performance as wired networks
 - Not all customer have the same expectation
 - Customer focuses on symptoms not causes
 - Verify Network Statistics
 - Represent the network as a whole, without identifying specific areas
 - Perform performance tests
 - Covers only the areas under test
 - Compare predicted performance with post deployment evaluation
 - Maps the above issues by location and time
- New Network or Expansion or Improvement
 - Predict performance
 - Only way to anticipate the customer experience
 - Compare predicted performance with post deployment evaluation
 - Calibrates the prediction model

Why KPIs and Measurements do not reflect Customer Experience

- KPIs are not standardized and are implemented by vendors
 - Generally there is not enough documentation to know exactly what is being represented
 - Vendors do not like to present bad statistics, mainly when they design the network
- KPIs provide average results
 - Good performance masks bad performance
 - Clients do not give credits for good performance, KPIs do
- LTE measurements are highly deficient and have a large potential of giving misleading results
 - Generally there is not enough documentation to know exactly what is being measured

Customer Experience Prediction is an essential step in the design and operation of a wireless network

No measurements or statistical KPI analysis can fix a badly designed network

Trying to fix a network after deployment or change is expensive and results in unsatisfied customers

2. What factors affect customer experience?

IP network performance evaluation is different from circuit switched networks

What is the difference between data speed and data tonnage?

- Speed and Tonnage are expressed in data rate (kbit/s)
- A 10 MHz LTE channel, with two TX antennas and 3 control symbols has 5,500 Resource Elements (RE) per TTI available for data
 - Assuming a reuse factor of 7 we get about 800 REs per TTI
- This results in a maximum speed data rate of 800 kbps for QPSK1/2 or 1.6 Mbps for 64QAM1/3
- An over subscription factor of 40 will give result in a tonnage data rate of 20 kbps for QPSK1/2 or 40 kbps for 64QAM1/3

What factors affect customer experience?

- IP communication can be divided in two groups:
 - Interactive (an action requires a reply from the other side to proceed with the communication)
 - Web browsing, e-mail, ftp
 - Uses TCP/IP or similar protocols
 - A communication session is affected by the tonnage available for the user
 - Independent (no action required from the other side to communicate)
 - Voice Conversation
 - Video and voice Streaming
 - Live video
 - Uses UDP/IP or similar protocols
- Customers express their network experience by:
 - Slow network response
 - Tonnage
 - Speed
 - Lost sessions
 - Bad quality (voice, video)
 - Customers like consistent performance

3. Parameters that affect customer experience

Parameters that affect customer experience

Network Design

- Customer expectations have to be specified and considered during the network design
- The main mistake done today is to simply collocate sites with 2G/3G sites, without analyzing the outcome

Network settings

- LTE has hundreds of parameters that have to be properly dimensioned
- Using default values will not result in an optimized network

Resource Planning

- LTE has many resources that have to be planned, which are essential to the network operation
- Vendors have developed proprietary solutions to avoid interference

Overload

 Loading a network beyond its capacity will deteriorate its performance and lead to countless corrective actions

Interference

- LTE has inherent issues with self-interference, mainly in the control channel
- Operators should look for vendor solutions for this issue

Internet connections

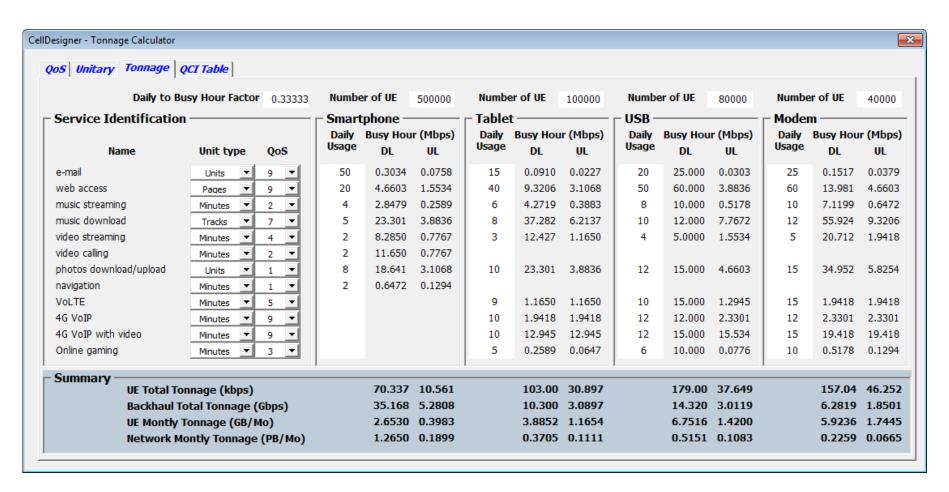
 Internet backhaul needs to be properly dimensioned, otherwise all other efforts will be in vain

SINR

SINR calculation should be done statistically and the network availability calculated

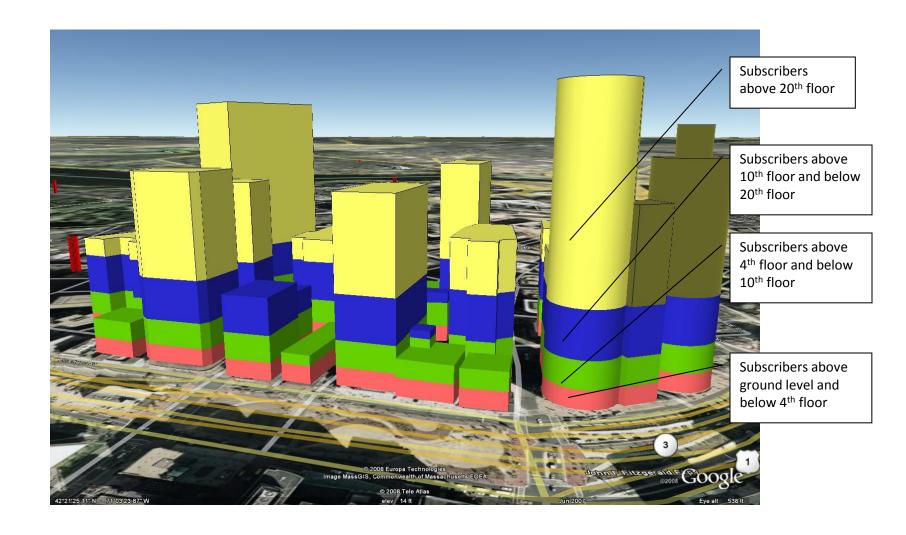
Capacity and Traffic Allocation

Traffic Modeling



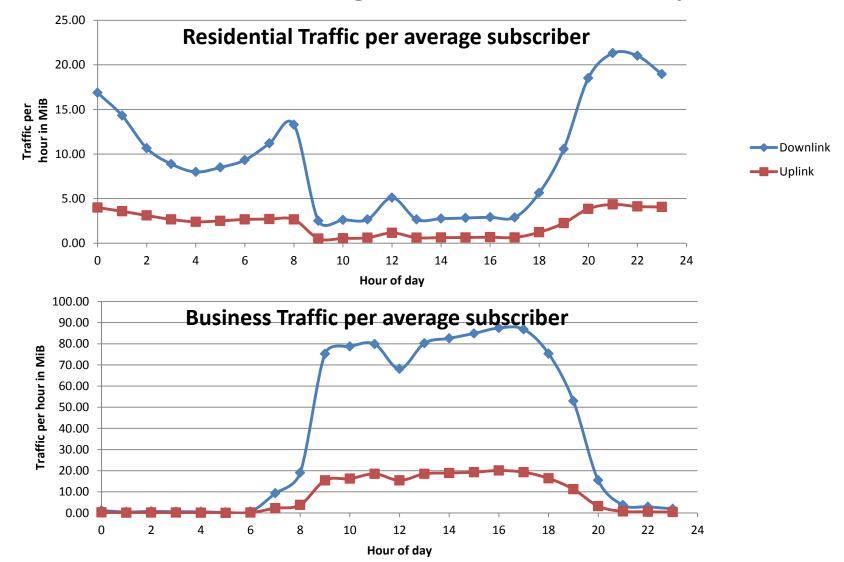
- Define traffic per user class
 - Similar service profiles and tonnage
- Define traffic per user equipment model
 - Smartphone
 - Tablet
 - USB
 - Modem
 - Other devices

User Traffic Calculator

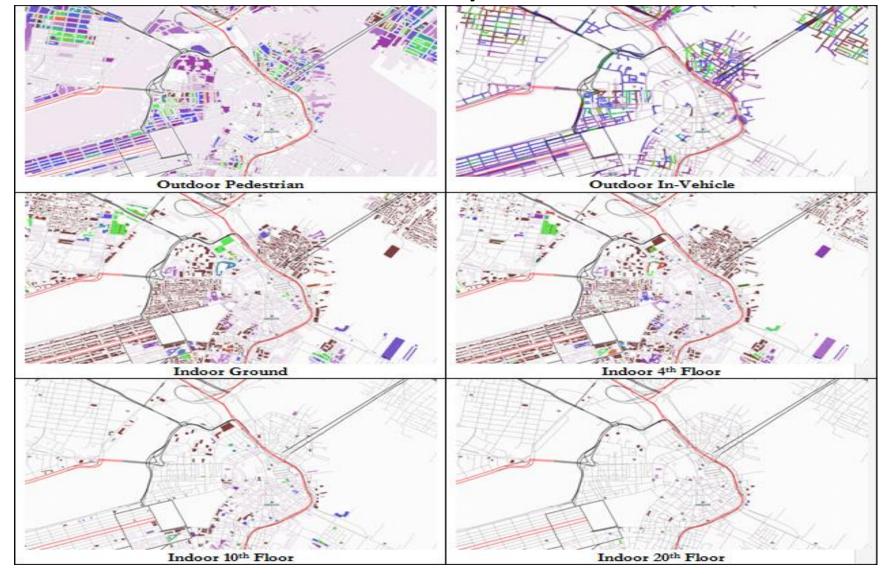


- Service tonnage per terminal type
 - Total network tonnage per terminal type was estimated

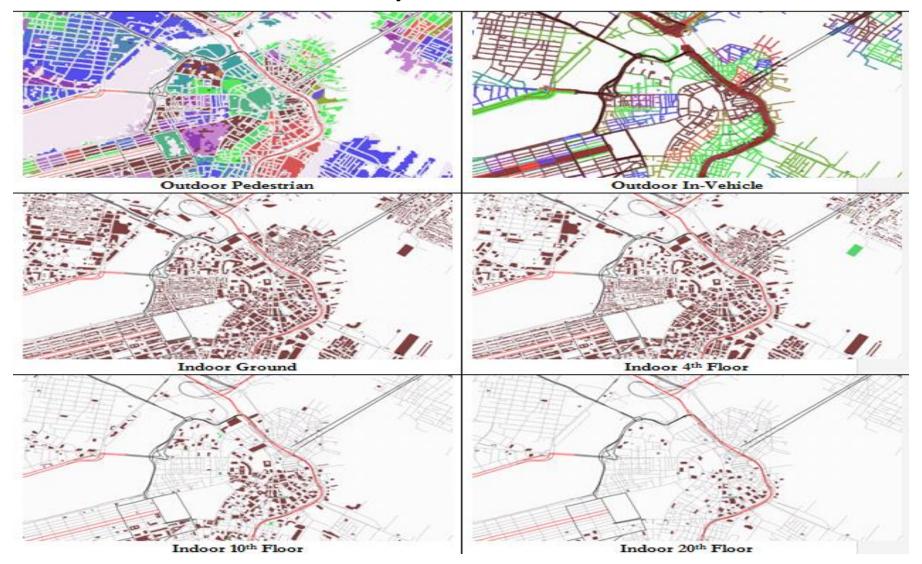
Traffic Modeling In-building

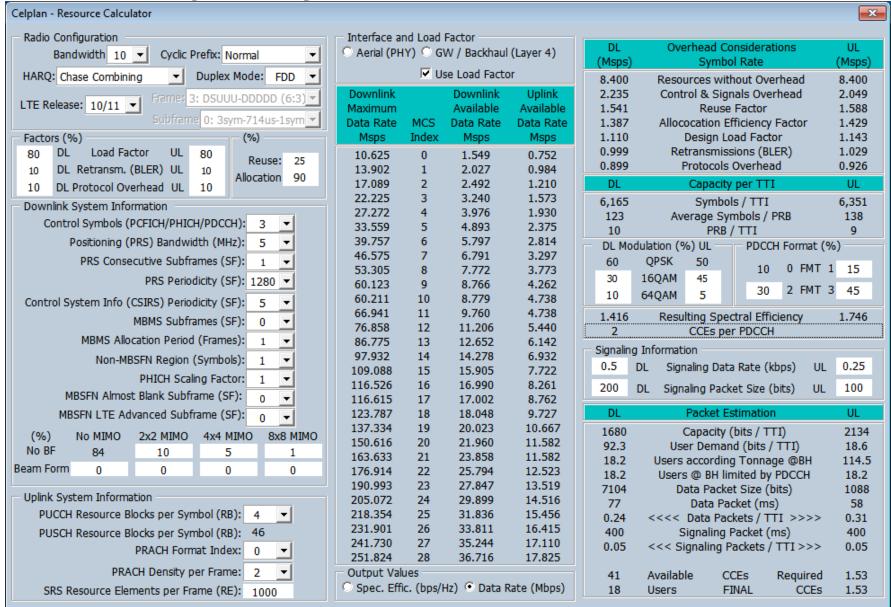


Market Modeling

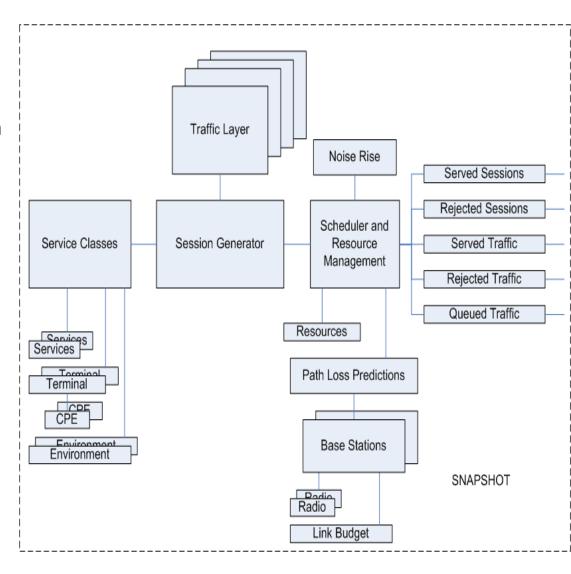

Traffic varies according to hour of the day

Traffic Distribution Outdoor and Indoor ***CelPlan


Residential Layers


Traffic Distribution Outdoor and Indoor CelPlan

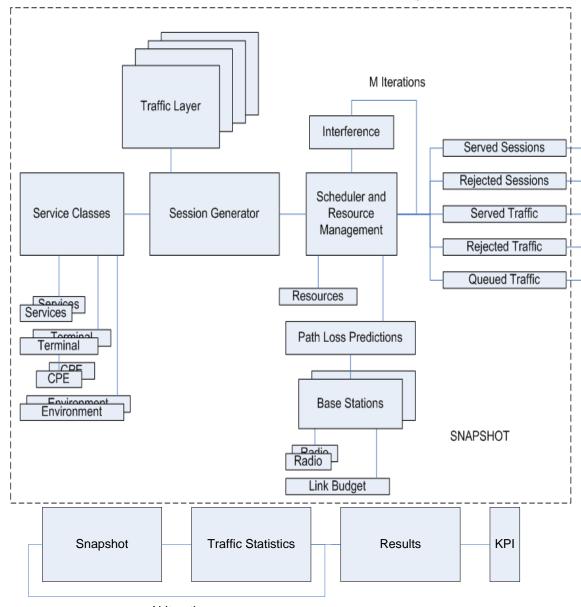
Business Layers



Traffic Simulation with Noise Rise **CelPlan*

- Market is modeled through Service Classes
 - Services
 - **Terminals**
 - UE radio
 - Environment
- Sessions are randomly generated in proportion to the traffic layers associated with them
 - Snapshot
- Network is modeled by cell and its path loss predictions
 - Cell
 - Radio
 - Link budget
- Scheduler and Resource Management algorithms assign calls, interference is replaced by an average noise rise
- Statistics are recorded for snapshot
 - Served Sessions
 - **Rejected Sessions**
 - Served Traffic
 - Rejected Traffic
 - **Queued traffic**

What should be planned?


- Link Budget
- Channel (frequency)
- Cyclic Prefix
- Physical Layer Cell Identity (PCI)
- Cell and BTS Identity Planning
- Tracking Areas
- PRACH
 - Configuration Index (CI)
 - Preamble format, cell range, load, RF
 - Root Sequence Index (RSI)
 - Unique per cell
 - Zero Correlation Zone (ZCZ)
 - Cell range, RF, RSI size
 - High Speed flag
 - Frequency offset
 - PUCCH allocation
- Uplink Reference Signal Sequence

- Neighbors
 - LTE
 - UMTS
 - GSM
 - IS2000
 - WiMAX
- Handover (Multi-RAT)
- BTS and Cell Identity
- Co-siting
- Resource Reuse
 - Cell Planning
 - Segmentation
 - Zoning
 - Fractional Planning
 - Internal/ external
 - ICIC
 - X2 interface

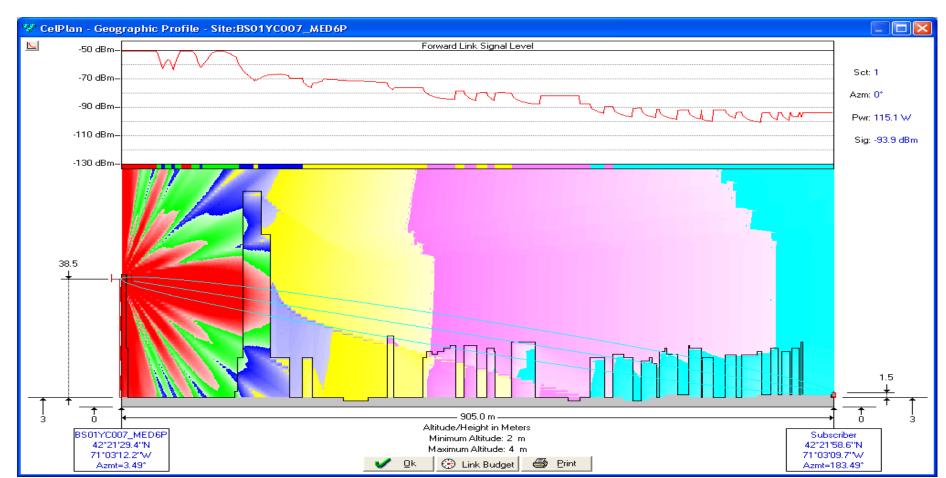
Resource Planning depends on the correct evaluation of SINR between cells

Traffic Simulation with Interference Cel

- Market is modeled through Service Classes
 - Services
 - **Terminals**
 - CPE radio
 - **Environment**
- Sessions are randomly generated in proportion to the traffic layers associated with them
 - Snapshot
- Network is modeled by cell and its path loss predictions
 - Cell
 - Radio
 - Link budget
- Scheduler and Resource Management algorithms assign calls, interference is replaced by an average noise rise
- Statistics are recorded for snapshot
 - Served Sessions
 - **Rejected Sessions**
 - Served Traffic
 - Rejected Traffic
 - **Oueued traffic**

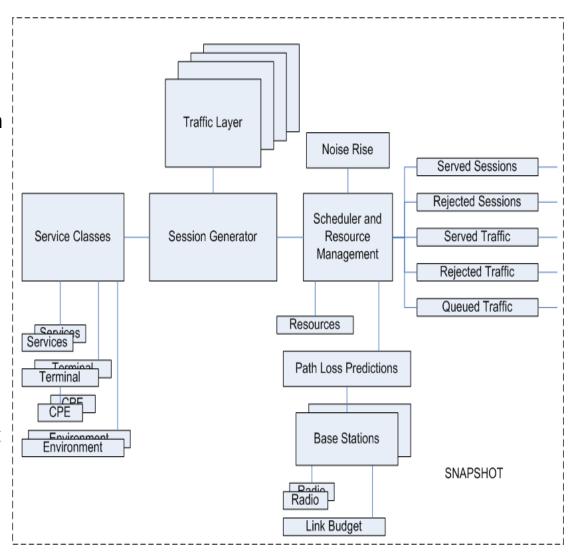
N Iterations

4. SINR availability and how to calculate it


Minimum conditions for a proper SINR analysis

- Use an appropriate propagation model
 - Capable of doing outdoor and indoor simultaneous predictions
 - Capable of considering fractional morphologies
 - Capable of 3D propagation analysis
 - Capable of predicting path loss at different heights
- Use a representative traffic distribution
 - Proper representation of outdoor and indoor traffic
 - Proper representation of traffic at multiple heights
 - Proper representation of different hours of the day
- Statistically valid signal level representation
 - Consider independent fading variations
 - Consider all possible interference sources with their statistical distribution

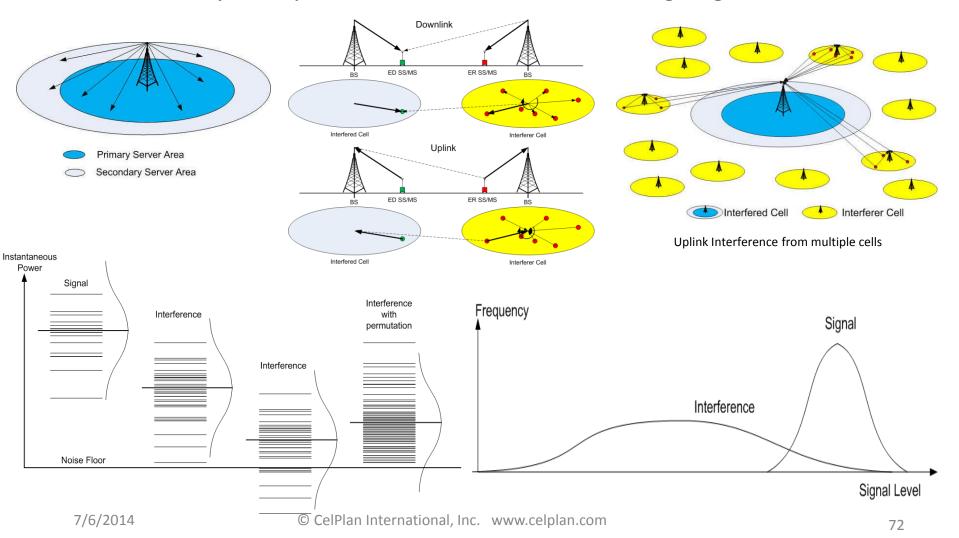
Korowajczuk 3D Prediction Model


- Multiple propagation mechanism
 consideration
- Simultaneous indoor and outdoor prediction
- 3D propagation analysis
- Fractional morphology
- Multiple height analysis

Traffic Simulation with Noise Rise **CelPlan*

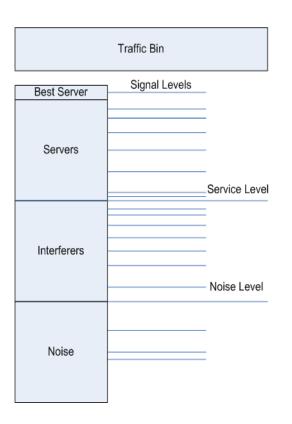
- Market is modeled through Service Classes
 - Services
 - **Terminals**
 - CPE radio
 - Environment
- Sessions are randomly generated in proportion to the traffic layers associated with them
 - Snapshot
- Network is modeled by BTS and path loss is predictions
 - **BTS**
 - Radio
 - Link budget
- Scheduler and Resource Management algorithms assign calls, interference is replaced by an average noise rise
- Statistics are recorded for snapshot
 - Served Sessions
 - **Rejected Sessions**
 - Served Traffic
 - Rejected Traffic
 - **Queued traffic**

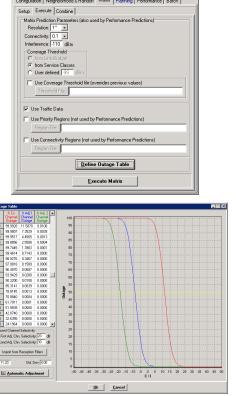
Resource Optimization



- CelEnhancer
- CelOptima
- Footprint Enhancement
 - Antenna tilt
 - Antenna azimuth
 - Antenna type
 - Antenna height
 - EIRP
- Interference Matrix Calculation
- Neighborhood Determination
 - Topological
- Handover Calculation
- Channel, Permutation and Zone Strategy
- Channel Assignment
- Code Assignment

SINR Analysis

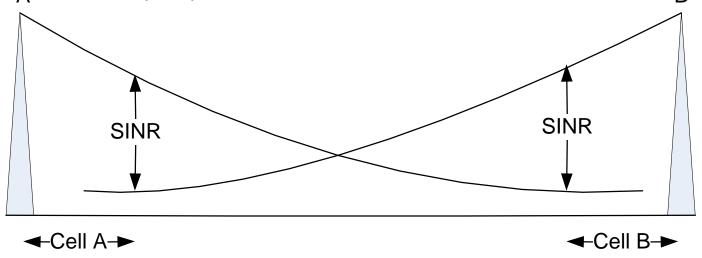

- To perform Resource Optimization Software has to know the interference between any pair of sectors
- The best way to express interference is as an outage against an SINR



Interference Outage Matrix

- The Outage matrix calculates outages for all sectors pairs
 - Pairs assume that sectors use the same resources, and the outage is multiplied by the affected traffic
- Expressing interference by traffic outage allows us to add interference contributions
 - A special algorithm is used to calculate overlaps

	S1	S2	S3	:	Sn
S1	O 1,1	O 1,2	O 1,3	:	O 1,n
S2	O 2,1	O 2,2	O 2,3		O 2,n
S3	O 3,1	O 3,2	O 3,3	:	O 3,n
:	:	:	:	:	:
Sn	On,1	On,2	On,3	:	On,n



Cellular Reuse

- Cellular technology is based on a physical separation between the usage of the same resources
- Each modulation requires a certain SNR, depending on the environment characteristics

The separation has to be larger for Rayleigh environments (non LOS) than for Gaussian ones (LOS)

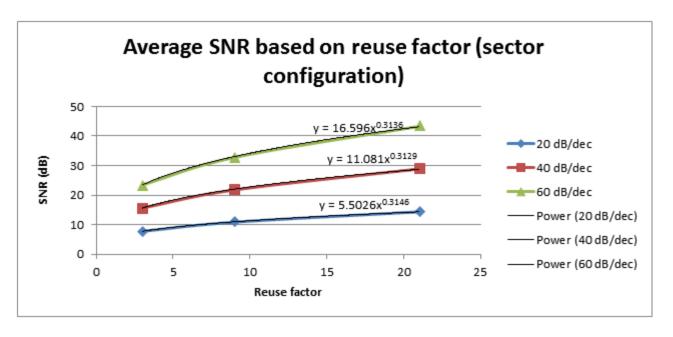
Required SNR (dB)						
	QPSK	16QAM	64 QAM			
Gaussian	2.5	8.2	12.1			
Rayleigh	15.7	21.3	25			

- LTE uses wide channels and many operators have a single channel, so a channel reuse of 1 is required
- Many people understood that this meant that all cells would use the same channel in its entirety
- Marketers were the main culprits about spreading this concept
- CDMA can reuse the same channel, but pays a spreading penalty and uses orthogonal codes
- In LTE the reuse of 1 concept was coupled with low coding rates (high repetition)
 - Very low coding rates do suggest negative values of SNR (Interference larger than the signal)
 - Very low coding rates reduce significantly network capacity
 - Repetition works well for low level faded signals, but adds very little for strong interfered signals
- Marketers would use high coding rates when the issue was traffic and low coding rates when the issue was interference

- When a channel reuse of 1 is used, other channel resources had to be partitioned
- 3GPP failed in provide mechanisms to do this in a consistent form, suggesting that if proper mechanism would be used all the channel resources could be used in a cell
- This is partially through and an improvement over the static resource assignment can be achieved, mainly considering beamforming
 - Beamforming is highly successful in Wi-Fi, but only works well when LOS is available
- In a traditional cellular network reuse of 7 is typical
- The new technique can improve this a little, but will not eliminate the need for resource planning
- Reuse in LTE systems will vary between 3 (achieved only in special circumstances) and 9 (applicable to difficult situations)

- To avoid interference frequency (segmentation) and time (zoning) resource allocation should be performed
 - Some resources can be allocated to multiple cells, so they can use them on mutually exclusive basis
- Frequency wise the ideal segmentation is a set of RBGs (Resource Block Group)
- Time wise the ideal segmentation is a set of TTIs (Transmission Time Interval), equivalent to a subframe

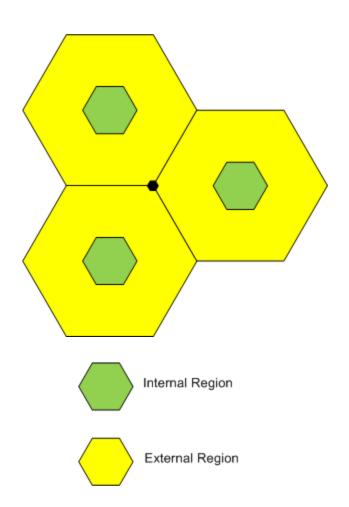
Reuse factor for different environments



The equations to find the reuse from the target SNR are:

• For 20 dB/dec:
$$x = \left(\frac{SINR}{5.5026}\right)^{3.18877553}$$

• For 40 dB/dec:
$$x = \left(\frac{SINR}{11.081}\right)^{3.195909}$$


• For 60 dB/dec:
$$x = \left(\frac{SINR}{16.596}\right)^{3.17864}$$

Reuse in LTE

- ITF was conceived for reuse 1
- A cell was divided in an interior (center) and and an exterior (edge) regions
- The exterior region would use very low coding rates (in the order of 0.07)
- The interior region would use higher coding rates
- No criteria was established to define exterior and interior regions
- Broadcast information has to use low coding rates
- Intercell Cell Interference Coordination (ICIC)
 was considered to improve the performance,
 four cases were proposed
 - No ICIC
 - Start-Stop Index (SSI)
 - Start Index (SI)
 - Random Start Index (RSI)
 - Start Index Geometry Weight (SIGW)
 - Random Index Geometry Weight (RIGW)

CelPlan Patent Applications

- CelPlan proposed a method of regionalizing a cell in several sub-cells according to different criteria
- CelPlan proposed a method of allocating resources to cells from a pool based on owned and shared resource tables

APPLICATION FOR UNITED STATES LETTERS PATENT

Title

APPARATUS TO PERFORM RESOURCE ASSIGNMENT IN A WIRELESS NETWORK

Inventor(s): Leonhard KOROWAJCZUK

> Date Filed: February, 2013

Attorney Docket No.: 7230-102

APPLICATION FOR UNITED STATES LETTERS PATENT

Title

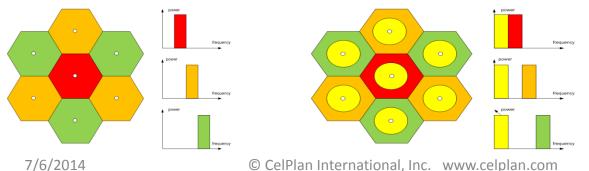
CHARACTERIZING A BROADBAND WIRELESS CHANNEL

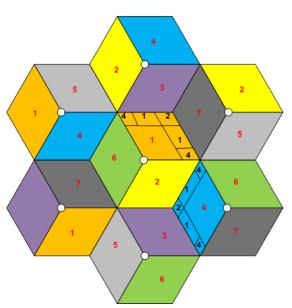
Inventor(s): Leonhard KOROWAJCZUK

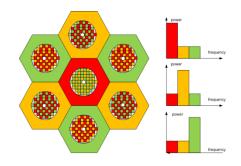
> Date Filed: July 25, 2013

Attorney Docket No.: 7230-101

APPARATUS TO PERFORM RESOURCE ASSIGNMENT IN A WIRELESS NETWORK




CLAIMS Docket 7230-102


- An apparatus (or methodology) that maximizes the spectral efficiency by dividing a cell in dynamic regions and allocating resources to each region, instead of the whole cell.
- Assigning many different resources and parameters, traditionally assigned per cell to cell regions
- Using fixed or variable number of cell regions for resource optimization purposes 3.

CLAIMS Docket 7230-103

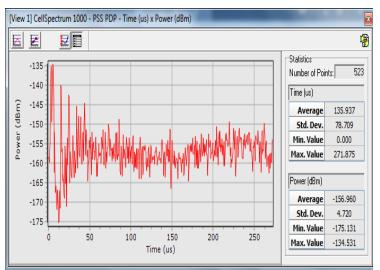
- A method for resource assignment in a wireless network for maximizing spectral efficiency, comprising:
 - dividing at least one cell into dynamic regions; and
 - allocating resources to each region separately, instead of to the cell as a whole
- The method of claim 1, wherein allocating resources to each region separately comprises assigning many different resources and parameters traditionally assigned per cell to cell regions separately
- The method of claim 1, wherein the at least one cell comprises a plurality of cells 3. and a number of cell regions the cells are divided into is fixed or variable for resource optimization purposes

5. Conclusion

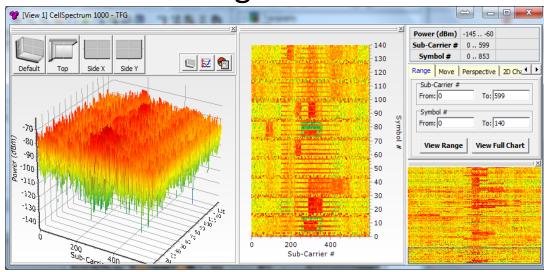
Conclusions

- Proper network design is essential to achieve a desired customer experience
- There is no amount of field measurement, network statistical data analysis, SON or ICIC procedures that can fix a badly design network
- Advanced tools with statistical analysis capabilities are required for a proper design
- Field measurement, network statistical data analysis are important auxiliary tools to calibrate and adjust design tools
- SON/ICIC capabilities should be considered in the optimization process, but can not solve network issues by themselves

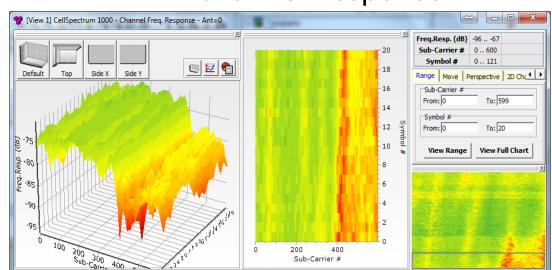
6. CelPlan New Products


CellSpectrum CellDesigner

CellSpectrum



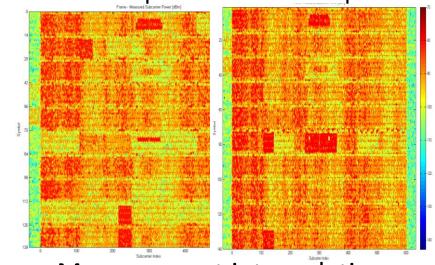
- A unique spectrum scanner for LTE channels
- Presents measurements in 1D (dimension), 2D and 3D at RE (Resource Element) level


Multipath

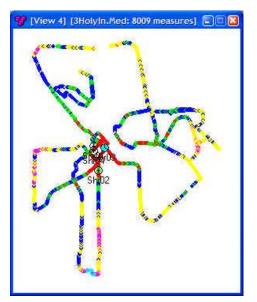
Received Signal level

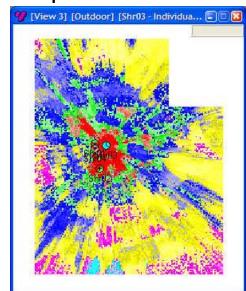
RF Channel Response

CellSpectrum



 Provides a unique antenna correlation analysis for MIMO estimation and adjustment


Drive Test



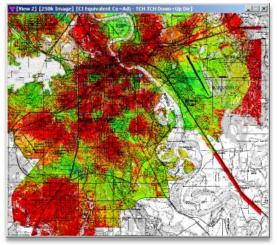
LTE frame port 0 LTE frame port 1

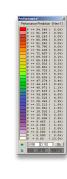
Measurement interpolation

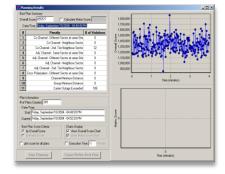
A new Generation of Planning Tools

A collaborative work with operators

Your input is valuable



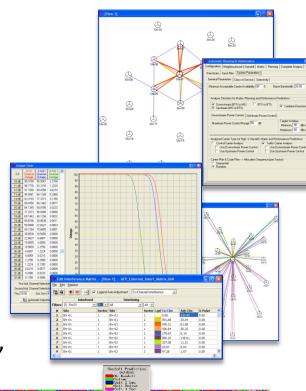

- CellDesigner is the new generation of Planning and Optimization tools
- Wireless networks became so complex that it requires a new generation of tools, capable of:
 - Documenting the physical deployments
 - Documenting network parameters for each technology
 - Flexible data traffic modelling (new services, new UE types)
 - Traffic allocation to different technologies
 - Fractional Resouce Planning
 - Performance evaluation
 - Integrated backhaul



Simultaneous Multi-Technology Support

- Supports all wireless technology standards:
 - LTE-A (TDD and FDD), WiMAX, WI-FI, WCDMA (UMTS), HSPA, HSPA+, IS2000 (1xRTT, EVDO), GSM (including Frequency Hoping), GPRS, EDGE, EDGE-E, CDMA One, PMR/LMR (Tetra and P25), MMDS/LMDS, DVB-T/H, and Wireless Backhaul
- Full network representation
 - Site, Tower, Antenna Housing, Antenna System, Sector, Cell, Radio
 - Full network parameter integration
 - KPI integration
- Full implementation of the Korowajczuk
 3D model, capable of performing simultaneously outdoor and indoor multi-floor predictions
- Multi-technology dynamic traffic simulation

Automatic Resource Planning (ARP)


- Enables the dramatic increase of network capacity and performance
- Handover, Frequency and Code Optimization
- Automatically and efficiently optimizes handoff thresholds, neighbor lists, and frequency plans
- Patent-pending methodology capable of significantly increasing cell capacity (SON & ICIC)

Automatic Cell Planning (ACP)

- Footprint and interference enhancement
- Allows optimization of radiated power, antenna type, tilt, azimuth, and height

Performance Predictions

 Overall performance prediction per service class (bearer)

Google Earth Integration

 Capable of presenting predictions and measurements live in Google Earth's 3D environment

Network Master Plan (NMP)

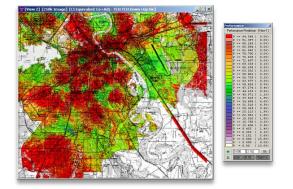

 Patent-pending methodology that simplifies SON and ICIC

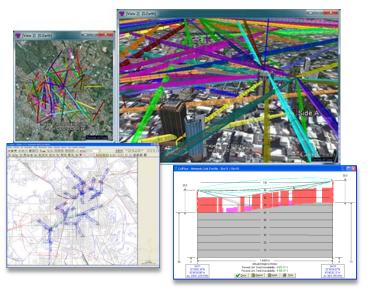
Integration of Field Measurement Data

- Collection of data from virtually any type of measurement equipment and any format
- Automatic extraction of propagation parameters

Integration of KPIs

 Comparison reports between reported and calculated KPIS




GIS Database Editor

Allows the editing and processing of geographical databases

Backhaul Planning

- Calculates network interconnections, interference analysis & reporting for point-topoint, microwave transmission links
- Can display obstruction in Fresnel zones as well as the path loss
- Calculates attenuation caused by diffraction.
- Calculates rain attenuation for each link
- Provides link performance and compares against the requirements established by ITU-R

4G Technologies Boot CampOnline Edition - EMEA Region

- Designed to give CEOs, CTOs, managers, engineers, and technical staff the practical knowledge on 4G networks (America Region time)
- Modular Course 2 days per module
 - Module A: Wireless Communications Fundamentals
 - July 22nd & 23rd, 2014
 - Module B: 4G Technologies in-depth Analysis
 - July 29th & 30th
- 4G Certification (Optional)
- Additional information, Pricing & Registration available at www.celplan.com

Next Webinar

"LTE Measurements, what they mean and how they are used"

August 6, 2014

LTE specifies several measurements to be done at UE and at Network level. Each measurement has precision limitations which need to be understood before taking decision based on the values reported

- UE Measurements
 - RSRP
 - RSSI and its variations
 - RSRQ and its variations
 - RSTD
 - RX-TX Time Difference
- Network Measurements
 - Reference Signal TX Power
 - Received Interference Power
 - Thermal Noise Power
 - RX-TX Time Difference
 - Timing Advance
 - Angle of Arrival
- Measurement Reporting
 - Intra-LTE
 - Inter-RAT
 - Event triggered
 - Periodic

Specialized measurements should be performed to characterize the network RF characteristics

- 1D Measurements
 - RF propagation model calibration
 - Receive Signal Strength Information
 - Reference Signal Received Power
 - Reference Signal Received Quality
 - Primary Synchronization Signal power
 - Signal power
 - Noise and Interference Power
 - Fade Mean
- 2D Measurements
 - Primary Synchronization Signal Power Delay Profile
- 3D measurements
 - Received Time Frequency Resource Elements
 - Channel Frequency response
 - Channel Impulse Response
 - Transmit Antenna Correlation
 - Traffic Load
- Measurement based predictions

Thank You!

Leonhard Korowajczuk webinar@celplan.com www.celplan.com

Questions?